VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (CSE) II Year II-Semester Old Examinations, May-2018

Design and Analysis of Algorithms
Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10×2 = 20 Marks)

1. Define Θ notation. What is the significance of it?
2. Determine if the following assertions are true or false.
a) $n(n+1) / 2 \in \Theta\left(n^{2}\right)$
b) $n^{2}(n+1) / 2 \in \Omega\left(n^{2}\right)$
3. Write best case recurrence for quick sort and solve for time complexity.
4. Using optimal merge patterns find minimum number of record merges for files with records ($\mathrm{fl}, \mathfrak{f 2}, \mathfrak{f} 3, \mathrm{f4}$) $=(5,2,10,6)$.
5. What is the Traveling Salesman Problem?
6. Determine an Longest Common Subsequence of $\langle 1,0,0,1,0,1,0,1\rangle$ and $<0,1,0,1,1,0,1,1$, $0>$.
7. Draw one possible solution of 4-Queen problem.
8. What is the difference between Backtracking and Branch and Bound Technique?
9. Differentiate NP-Hard and NP-Complete.
10. State the Cook's Theorem.

$$
\begin{equation*}
\text { Part-B }(5 \times 10=50 \text { Marks }) \tag{5}
\end{equation*}
$$

11. a) What is the significance of worst case analysis of an algorithm?
b) Construct Binary max heap for the given elements ($2,6,3,5,8,10,14,7$), and then sort the elements using heapsort.
12. a) Explain Merge Sort Algorithm with example.
b) Apply Kruskal's algorithm to construct the Minimum cost Spanning Tree on the graph shown in Figure 1.

13. a) Explain the Dynamic programming algorithm for Matrix-Chain Multiplication problem. [6]
b) Solve the Multistage graph to find shortest path from source node s to target node t
using forward approach of Dynamic Programming for the graph given in Figure 2 .

14. a) Design the backtracking algorithm for 8 -Queen problem.
b) Solve the $0 / 1$ knapsack problem using branch and bound technique where there are 4 items with weights $\{3,5,9,5\}$, profits $\{45,30,45,10\}$ and capacity (m) of the knapsack is 16 .
15. a) Write a non-deterministic sorting algorithm and analyze time complexity .
b) Prove that the Clique decision problem is NP-complete.
16. a) Explain the amortized analysis methods with suitable examples.
b) Give asymptotic bounds for $T(n)$ where $T(n)=2 T(n / 4)+2$. Assume $T(n)$ is constant for $\mathrm{n} \leq 2$. Use Masters Theorem.
17. Answer any two of the following:
a) Design all-pairs shortest paths algorithm.
b) Give a backtracking based solution to find Hamiltonian Cycle in a graph G (V,E).
c) Prove that if a problem A is polynomial time reducible to problem B and $B \in P$, then [5]
$\mathrm{A} \in P$.
