

Code No. : 14206 O2

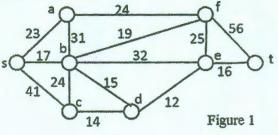
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE) II Year II-Semester Old Examinations, May-2018

Design and Analysis of Algorithms

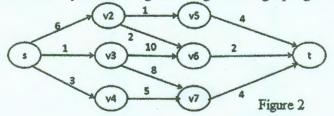
Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B


Part-A (10 ×2 = 20 Marks)

- 1. Define Θ notation. What is the significance of it?
- Determine if the following assertions are true or false.
 a) n(n + 1)/2 ∈ Θ (n²)
 b) n²(n + 1)/2 ∈Ω(n²)
- 3. Write best case recurrence for quick sort and solve for time complexity.
- 4. Using optimal merge patterns find minimum number of record merges for files with records (f1,f2,f3,f4)=(5,2,10,6).
- 5. What is the Traveling Salesman Problem?
- 6. Determine an Longest Common Subsequence of <1,0,0,1,0,1,0,1> and <0,1,0,1,1, 0, 1, 1, 0>.
- 7. Draw one possible solution of 4-Queen problem.
- 8. What is the difference between Backtracking and Branch and Bound Technique?
- 9. Differentiate NP-Hard and NP-Complete.
- 10. State the Cook's Theorem.


Part-B (5 × 10=50 Marks)

11.	a)	What is the significance of worst case analysis of an algorithm?	[5]
	b)	Construct Binary max heap for the given elements (2,6,3,5,8,10,14,7),	[5]
		and then sort the elements using heapsort.	

- 12. a) Explain Merge Sort Algorithm with example.
 - b) Apply Kruskal's algorithm to construct the Minimum cost Spanning Tree on the [5] graph shown in Figure 1.

- 13. a) Explain the Dynamic programming algorithm for Matrix-Chain Multiplication problem. [6]
 - b) Solve the Multistage graph to find shortest path from source node s to target node t [4] using forward approach of Dynamic Programming for the graph given in Figure 2.

[5]

14.	a) Design the backtracking algorithm for 8-Queen problem.	[5]
	b) Solve the 0/1 knapsack problem using branch and bound technique where there are 4 items with weights{3, 5, 9, 5}, profits{45, 30, 45, 10} and capacity(m) of the	[5]
	knapsack is 16.	
15.	a) Write a non-deterministic sorting algorithm and analyze time complexity.	[5]
	b) Prove that the Clique decision problem is NP-complete.	[5]
16.	a) Explain the amortized analysis methods with suitable examples.	[5]
	b) Give asymptotic bounds for T(n) where $T(n) = 2T(n/4) + 2$. Assume T(n) is constant for $n \le 2$. Use Masters Theorem.	[5]
17.	Answer any <i>two</i> of the following:	
	a) Design all-pairs shortest paths algorithm.	[5]
	b) Give a backtracking based solution to find Hamiltonian Cycle in a graph G (V,E).	[5]
	c) Prove that if a problem A is polynomial time reducible to problem B and $B \in P$, then $A \in P$	[5]

ശശേദ്ധങ്ങ

b) Construct Binary max have for the given alcosing (2,6,3,3,8,10,1,4,7) and there are the elements using for the given alcosents (2,6,3,3,8,10,1,4,7).

shown a stine minimum for not spend and part of

which shown in Figure 1.

b) an Exploring the Dynamics programming algorithm for Matrix-Chain Multiplication probate. [6]

that for some opposite of Lynamics Programming for the graph grow in figure 2

1 alerta